skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Jin Gyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Active particles, or micromotors, locally dissipate energy to drive locomotion at small length scales. The type of trajectory is generally fixed and dictated by the geometry and composition of the particle, which can be challenging to tune using conventional fabrication procedures. Here, we report a simple, bottom-up method to magnetically assemble gold-coated polystyrene Janus particles into “locked” clusters that display diverse trajectories when stimulated by AC electric fields. The orientation of particles within each cluster gives rise to distinct modes of locomotion, including translational, rotational, trochoidal, helical, and orbital. We model this system using a simplified rigid beads model and demonstrate qualitative agreement between the predicted and experimentally observed cluster trajectories. Overall, this system provides a facile means to scalably create micromotors with a range of well-defined motions from discrete building blocks. 
    more » « less
  2. Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases. 
    more » « less
  3. null (Ed.)